Compressible Navier--Stokes System with General Inflow-Outflow Boundary Data
نویسندگان
چکیده
منابع مشابه
The Quasineutral Limit of Compressible Navier-stokes-poisson System with Heat Conductivity and General Initial Data
The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general (ill-prepared) initial data is rigorously proved in this paper. It is proved that, as the Debye length tends to zero, the solution of the compressible Navier-Stokes-Poisson system converges strongly to the strong solution of the incompressible Navier-Stokes equations plus a term of fast singul...
متن کاملTowards a Transparent Boundary Condition for Compressible Navier–stokes Equations
A new artificial boundary condition for 2D subsonic flows governed by the compressible Navier–Stokes equations is derived. It is based on the hyperbolic part of the equations, according to the way of propagation of the characteristic waves. A reference flow as well as a convection velocity are used to properly discretize the terms corresponding to the entering waves. Numerical tests on various ...
متن کاملWeak-strong uniqueness for compressible Navier-Stokes system with slip boundary conditions on time dependent domains
We consider the compressible Navier-Stokes system on time-dependent domains with prescribed motion of the boundary, supplemented with slip boundary conditions for the velocity. We derive the relative entropy inequality in the spirit of [7] for the system on moving domain and use it to prove the weak-strong uniqueness property.
متن کاملStability of Wave Patterns to the Inflow Problem of Full Compressible Navier-Stokes Equations
The inflow problem of full compressible Navier-Stokes equations is considered on the half line (0,+∞). Firstly, we give the existence (or non-existence) of the boundary layer solution to the inflow problem when the right end state (ρ+, u+, θ+) belongs to the subsonic, transonic and supersonic regions respectively. Then the asymptotic stability of not only the single contact wave but also the su...
متن کاملWeak-strong uniqueness for the isentropic compressible Navier-Stokes system
We prove weak-strong uniqueness results for the isentropic compressible Navier-Stokes system on the torus. In other words, we give conditions on a strong solution so that it is unique in a class of weak solutions. Known weak-strong uniqueness results are improved. Classical uniqueness results for this equation follow naturally.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematical Analysis
سال: 2019
ISSN: 0036-1410,1095-7154
DOI: 10.1137/17m115089x